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AUTOMATIC IMAGE DECOMPOSITION

Kedar A. Patwardhan and Guillermo Sapiro

Department of Electrical and Computer Engineering and Digital Technology Center,
University of Minnesota, Minneapolis, MN-55455, USA.�

kedar, guille � @ece.umn.edu

ABSTRACT

The decomposition of an image into its primitive components,
such as cartoon plus texture, is a fundamental problem in im-
age processing. In [11, 16], the authors proposed a technique to
achieve this decomposition into structure and texture. These two
components are competing ones, and their proposed model has a
critical parameter that controls this decomposition. In this paper
we show how to automatically select this parameter, and demon-
strate with examples the importance of this optimal selection.

Keywords: Image decomposition, structure, texture, bounded vari-
ation, parameter selection, inpainting.

1. INTRODUCTION

Natural images usually contain two main components, which are
broadly classified as structure and texture. Structure is mainly the
sharp edges in the image, which generally separate different ob-
jects, or are caused by differences in shading. Texture, on the other
hand, is in general a repetitive pattern, or “oscillations.” The de-
composition of an image into two parts, where one image contains
the structure and the other image contains the texture, is important
in a number of different areas, such as copying just the texture in
one image onto another image, segmentation of an image based
upon the texture or DC gray-values, etc. This decomposition has
been shown in [6] to be fundamental for image inpainting, the art
of modifying an image in a non-detectable form [2, 3, 5, 7, 10].

Following work by Meyer [11], Vese and Osher proposed in [16]
an algorithm to achieve this decomposition, this being the tech-
nique exploited in [6] for image inpainting (see also [1, 9, 12, 14]
for other related decomposition approaches). As we will see bel-
low, there is a critical parameter in this decomposition that controls
the competition between the structure and the texture components.
This parameter was left to the user to select, in the original for-
mulation. Our goal in this paper is to simplify the decomposition,
and thereby the above mentioned applications, by designing a very
simple procedure for the automatic selection of this critical param-
eter. The devised method has been motivated by the approach used
in [13] (see also [4] for automatic local selections of critical param-
eters for this TV model), and automatically finds the parameter for
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the best possible decomposition in terms of a given penalty equa-
tion. We should note that this is in sharp contrast with multiscale
approaches such as those reported in [15], where the authors opt
for selecting a set of parameters, thereby producing a set of de-
compositions instead of just an optimal one as suggested here.

In the following sections, we describe our proposed technique and
illustrate its virtues by real examples.

2. IMAGE DECOMPOSITION: BACKGROUND AND
OUR APPROACH

In this section, we will first throw some light on the image decom-
position approach proposed in [16] and [11]. The main ingredients
of this decomposition are the total variation minimization of [13]
for image denoising and restoration, and the space of oscillating
functions introduced in [11] to model texture or noise. We should
note that this decomposition is not just a low-pass/high-pass one,
since both the structure and texture images contain high and low
frequencies, but of different type.

Let ��� IR ��� IR be a given observed image, ���
	��� IR ��� . � could
be just a noisy version of a true underlying image � , or could be a
textured image, � then being a simple sketchy approximation or a
cartoon image of � (with sharp edges). A simple relation between� and � can be expressed by a linear model, introducing another
function � , such that ����������������������������� �����!���#" In [13], the
problem of reconstructing � from � is posed as a minimization
problem in the space of functions of bounded variation $&%&� IR �'� ,
[8], allowing for edges:( )+*,.-./�02143 ���5�4�7698 :;�48'�=<�>?�@> �ACB �D�E�F���G��HD" (1)

where <2IKJ is a tuning parameter. The second term in the energy
is a fidelity term, while the first term is a regularizing term, to
remove noise or small details, while keeping important features
and sharp edges. The selection of the optimal parameter < for this
model is dealt with in [4, 13].

In [11], Meyer proved that for small < the model will remove the
texture. To extract both the �L�M$&% (a piecewise constant or
cartoon representation of the image), and the � component as an
oscillating function (texture or noise) from � , Meyer proposed the
use of a different space of generalized functions, which is in some
sense the dual of the $&% space (and therefore, contains oscilla-
tions).

Inspired by Meyer, in [16], Vese and Osher devised and solved a
variant of his model, making use of partial differential equations.



The following minimization problem is the one proposed in [16]:

( )+*,�� ����� � B 1 ��� �����	��
 ��� � � � 6 8 :;�48 (2)

� < 6 8 �� ���������
������� � 8 ��� � � �
��� � 6���� � �
 ��� �� �

� � � � ��! �" H �
where <5�	� IKJ are tuning parameters, and # �%$ . The first term
ensures that the cartoon image �M�M$&%&� IR ��� , the second term
ensures that �'& �2� div �(��
 ��� � � ( �(��
 ��� � � are the two auxiliary
functions used by Meyer to define the new norm for oscillations),
while the third term is a penalty on the norm of � � div �(�)
'��� � � .
This follows the space for oscillations proposed in [11], where the
texture image � is given by div �(��
 ��� � � , with the pair �(��
 ��� � � hav-
ing minimal norm.

For # �+* , the corresponding Euler-Lagrange equations are [16]

� � �,�������
�'����� � � *- < div � :;�8 :;�48.� � (3)

� ��
� � �
 ��� �� � - < � �� � ����G�C�@��� ���� ��
��/� ���� � � !�� (4)

� � �� � �
 ��� �� � - < � �� � ����G�C�@��� ���� ��
4��� ��0� � � ! " (5)

As can be seen from the examples in [16] , the minimization model
(2) allows to extract from a given real textured image � the com-
ponents � and � , such that � is a sketchy (cartoon) approximation
of � , and �&� ��1 � �(��
 �	� � � represents the texture or the noise (note
once again that this is not just a low/high frequency decomposi-
tion). For some theoretical results and the detailed semi-implicit
numerical implementation of the above Euler-Lagrange equations,
see [16].

Our goal in this paper is to develop a simple and fast method to au-
tomate the selection of the tuning parameter < so that we minimize
the energy in (2). This parameter controls the competition between
the structure part � and the texture part � , and if wrongly selected,
it will leave texture in � and/or strong boundaries on � , thereby not
achieving the main goal of the decomposition and making subse-
quent uses of it more difficult.

To achieve this goal, we use a method similar to the gradient pro-
jection method used in [13]. We first make an approximation re-
sulting from the model proposed in [13], that at equilibrium state,

� �
 ���������@��� �� ���������4� *- < � (6)

see [16].

At every iteration of implementing the above Euler-Lagrange
equations (3,4,5), we assume that we have reached equilibrium.
Hence, the second term contributing to the energy in (2) is close
to zero. Let us call the new (minimizing) values of � , �)
 and � �
by the names �3254�6 , ��
 254�6 and � � 254�6 . Suppose that the new value
of < (say, <7254�6 ) minimizes the energy. Then, in a method similar
to the gradient projection method, we equate the energy calculated
from the previous values with that calculated from the new values
which are supposed to attain equilibrium. Thus,

6 8 :;�3254�6 8 ��� 6 � *- <7254�6 � � � � ��� 6 8 :;�48 (7)

� < 6 8 �� ������ ��
8������ � 8 ��� � � �
��� � 6��)� � �
 ��� �� � � � � ��!5HD"

gives us a simple expression for computing <3254�6 , for the next it-
eration of the above Euler-Lagrange equations. Although the as-
sumptions mentioned above do not need to be made, and a simi-
lar computation can be done without assuming the approximation
for ���
 �9���� and without neglecting the second term in the varia-
tional formulation, making these assumptions simplifies the com-
putation, and experimentally we haven’t observed any significant
improvement when the real values of these terms are considered.1

3. EXPERIMENTAL RESULTS

The results shown next have been generated using the ‘Image Pro-
cessing Toolbox’ in MATLAB c

:
. Since there is just an addition

of one simple step for getting the new < at every iteration, there is
very little overhead and the decomposition takes the same amount
of time as in the case of [16]. Figure 1 shows the decomposition
of the original image (top), and the corresponding cartoon ( � ) and
texture ( � ) images, when an arbitrary value of < was used for the
decomposition. Notice that there is still a clear component of the
brick texture left in the cartoon image which was not transferred
completely to the texture image. The use of equation (7) leads to a
much smoother and piecewise constant cartoon image as described
in Figure 2. The optimal lambda used also gives a much smaller
value for the energy in Equation (2), as shown in the plot on the
left. In Figure 3 we show that arbitrary selections of < can affect
not only the � image as in Figure 1, but the � image as well. The
slight light variation in the original image is passed-on to the �
(texture) image with arbitrary < , while this is eliminated with our
algorithm. Lastly, in Fig.4, we describe the importance of auto-
matic selection of the best < by an illustrative example from the
field of inpainting. The left figure was decomposed and inpainted
as in [6], by using an arbitrary < (center) and with the optimal <
(right). The region pointed to by the arrow shows the discrepancies
in inpainting caused due to a sub-optimal decomposition.

4. CONCLUDING REMARKS

In this note we have shown how to automatically compute the
critical parameter in the image decomposition model proposed in
[11, 16]. The technique is very simple and adds virtually no com-
putational cost to the overall decomposition procedure. We should
note that we can also consider finding a piece-wise space varying

1In addition to using the approximation (6), we tried two other ap-
proaches. Firstly, we simply substituted ;<254�6 , =�254�6 , > 
 254�6 and > � 254�6in equation (2) and equated this to the energy computed from the previ-
ous iteration, so as to get the value for ;<254�6 . Secondly, we tried using
the value of the residue at equilibrium from the model proposed by [16],
in place of the second term in the equation (2). This also gives a simple
expression for getting the next ; . Both of these methods did not produce
desirable results, especially in comparison with (7).
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< , following work done in [4] for the TV model in [13]. Prelim-
inary experiments in this direction show that although there is a
clear improvement in the energy, visually there are no significant
changes when compared with the global optima computed with the
technique proposed here. Additional results in this direction will
be reported elsewhere.
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Fig. 1. Original image (top) and the corresponding decomposition.
The cartoon image (center) has some texture still intact.
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Fig. 2. Plot (left) shows how our method fares better than an arbitrary < . The cartoon image (center) is more smooth and piecewise constant
than the corresponding one in Figure 1.

Fig. 3. The image on the left is decomposed with arbitrary < to produce the � image on the center and with optimal < to produce the one on
the right. The � image in the center still contains edges at the place of light contrast change (and not just oscillations), and these are gone
with the < computed with our approach. .

Fig. 4. Illustration of the application of our method for inpainting, following [6]. The image in the center is reconstructed using arbitrary <
and the one on the right uses our method for selecting < .
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